Week 5 Homework - CMSC405

1. Show the results and intermediate steps for a translation of $(20,40,-10)$, a rotation of 135 degrees about the z-axis applied to a starting point of $(45,-95,20)$. Perform a separate operation applying scale with scale factors of $s x=2.0, s y=1.6$ and $s z=1.0$. You should use 4×4 matrix math for your calculations. Note: Use the $P_{2}=T^{-1} R(z) T P 1$ approach for a general 3D rotation about the z-axis and $P_{2}=T^{-1} S T P 1$ approach for a general scaling.
$P 1=(45,-95,20)$

$$
\mathrm{P} 2=T^{1-1} \times R(z) \times T \times P 1
$$

$$
=\left(\begin{array}{rrrr}
1 & 0 & 0 & -20 \\
0 & 1 & 0 & -40 \\
1 & 0 & 1 & 10 \\
0 & 3 & 1
\end{array}\right)\left(\begin{array}{rrrr}
\cos (135) & -\sin (135) & 0 & 0 \\
\sin (135) & \cos (135) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 4 & 1
\end{array}\right)\left(\begin{array}{rccc}
1 & 0 & 0 & 20 \\
0 & 1 & 0 & 40 \\
0 & 0 & 1 & -19 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{r}
45 \\
-95 \\
24 \\
1
\end{array}\right)
$$

$$
8=\left(\begin{array}{cccc}
S_{x} & 0 & 0 & 0 \\
0 & S_{y} & 0 & 0 \\
0 & 0 & S_{2} & 0 \\
0 & 0 & 0 & 0
\end{array}\right)=\left(\begin{array}{rrrr}
20 & 0 & 0 & 0 \\
0 & 1.0 & 0 & 0 \\
0 & 0 & 1.0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

$$
P 2=\left(\begin{array}{rrrr}
1 & \times & 0 & \times T \times P \\
0 & 1 & 0 & -20 \\
0 & 0 & 1 & 10 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{rrrr}
20 & 0 & 0 & 0 \\
0 & 1.6 & 0 & 0 \\
0 & 0 & 1.0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{rrrr}
1 & 0 & 0 & 20 \\
0 & 1 & 0 & 40 \\
0 & 0 & 1 & -10 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{r}
45 \\
-25 \\
20 \\
1
\end{array}\right)
$$

$$
\Rightarrow\left(\begin{array}{c}
-15 \\
-\infty \\
1 \\
1
\end{array}\right)
$$

2. Using quaternions, determine the final transformed location of point $P 1=(5,9,-10)$, after a 45degree rotation about the z-axis, 90 -degree rotation about the x-axis and 75 -degree rotation about the y-axis. Be sure to show your work including the quaternion values for all steps.

$$
P=(5,9,-10)=0+5 i+9 j-10 k
$$

$$
\begin{aligned}
& \mathrm{T}=\left(\begin{array}{rrrr}
1 & 0 & 0 & 20 \\
0 & 1 & 0 & 40 \\
0 & 0 & 1 & -10 \\
0 & 0 & 0 & 1
\end{array}\right) \quad \mathrm{T}^{-1}=\left(\begin{array}{rrrr}
1 & 0 & 0 & -20 \\
0 & 1 & 0 & -40 \\
0 & 0 & 1 & 10 \\
0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

```
q1 = cos(45/2) +i* 童(45/2) = 0.4518 + 0.8921i
q1' = 0.4518-0.8921k
P1 = q1 * P * q1' = (0.4518 + 0.8921k) (5i + 9j - 10k) (0.4518-0.8921k)
    =(2.259i + 4.0662j-4.518k+4.4605ki + 8.0289kj - 8.921k^2) (0.4518-0.8921k)
    =(2.259i + 4.0662j-4.518k+4.4605j-8.0289i + 8.921) (0.4518-0.8921k)
    = (8.921-6.03i + 8.5312j-4.518k) (0.4518-0.8921k)
    = 4.0305-7.9584k-2.724i + 5.3793ik + 3.8544j-7.6107jk - 2.0412k + 4.0305k^2
    = 4.0305-7.9584k-2.724i-5.3793j + 3.8544j-7.6107i - 2.0412k - 4.0305
    -10.3347i - 1.5249j-9.9996k
q2 = cos(75/2) +j * sin(75/2) = 0.967-0.2548j
q2' = 0.967 + 0.2548j
P2 = q2 * P1 * q2' = (0.967-0.2548j) (-10.3347i-1.5249j-9.9996k) (0.967 + 0.2548j)
    = (-9.9937i - 1.4746j-9.67k + 2.6333ji + 0.3885j^2 + 2.5479jk) (0.967 + 0.2548j)
    = (-9.9937i - 1.4746j - 9.67k-2.6333k-0.3885j + 2.5479i) (0.967 + 0.2548j)
    = (-0.3885-7.4458i-1.4746j-12.303k) (0.967 + 0.2548j)
    =-0.3757-0.099j-7.2009i-1.8466ij -1.4259j - 0.3757j^2-11.8973k-3.1349kj
    =-0.3757-0.099j-7.2009i-1.8466k-1.4259j+0.3757-11.8973k + 3.1349i
    = -4.066i-1.5249j-13.7439k
q3 = cos(90/2) +i* 芷(90/2) =-0.5918 + 0.8061i
q3' = -0.5918-0.8061i
P3 = q3 * P2 * q3' = (-0.5918 + 0.8061i) (-4.066i-1.5249j-13.7439k) (-0.5918-0.8061i)
    =(2.4063i + 0.9024j + 8.1336k-3.2776i^2-12.292ij - 11.079ik) (-0.5918-0.8061i)
    = (2.4063i + 0.9024j + 8.1336k + 3.2776-12.292k + 11.079j) (-0.5918-0.8061i)
    = (3.2776 + 2.4063i + 11.9814j +6.9044k) (-0.5918-0.8061i)
```

```
    = -1.9379-2.6421i - 1.2465i-1.9397i^2-7.0906j-9.6528ji - 4.086k - 5.5656ki
    =-1.9379-2.6421i-1.2465i + 1.9397-7.0906j + 9.6528k-4.086k-5.5656j
    = -3.8886i -12.6562j + 5.5722k
P3 = (-3.8886, -12.6562, 5.5722)
```

3. Using OpenGL and your programming environment, create and provide 3D views for a 100 by 100 by 100 cube. You should use QL_QUADS to create each of the cube sides. Each side should be a different color (of your choice) and have text or a bitmap pattern of your choice. Your code should display each of the 6 -sides using perspectives of your choice. However; each perspective should retain the 3D perspective. Hint: You can expand from the existing code example on pages 346-347 and build your cube one side at a time. No animation is required. You can provide the 6 perspectives by manually changing the parameters and submitting the snapshots in your document along with the parameter changes; or you can use C++ code to display each perspective in a loop. Either approach is acceptable.

Deliverables: You should submit a well-organized, word document that includes the results for the first two questions of this assignment along with a screen captures of the output of running your Visual C++ code. Be sure to include your parameters for the perspective changes and the snapshots from each of your 6 different perspectives. You should submit your C++ source code and header file for your 3D perspective applications. You should name your word assignment "yournamehw5.doc" (or .docx). You should name your C++ source code yournamehw5.cpp. Be sure to submit your homework in the WebTycho assignments folder no later than the due date listed in the syllabus.

