29.4 What is wrong in the following two programs? Correct the errors.

Program 1

public class Test inplenents Runnable {
public static void main(String[] args) {
new Test ();

}

public Test(){

Test task = new Test();

new Thread(task).start();

}

public void run() {
Systemout.println("test");

}

}
29.4 Answer 1

"Test task = new Test();" has a execution error that is a
StackOverflowError. This is because it is called recursively inits own
constructor.

I would correct the program as foll ows.

public class Test inplenents Runnable {
public static void main(String[] args) {
new Test ();

}

public Test(){

Thread task = new Thread(this);
task.start();

}
public void run() {

Systemout.println("test");
}
}
Program 2

public class Test inplenents Runnable {
public static void main(String[] args) {
new Test ();

}

public Test(){

Thread t = new Thread(this);
t.start();

t.start();

}
public void run() {

Systemout.println("test");
}

}
29.4 Answer 2

The second "t.start();" has a execution that is a
1l egal Thr eadSt at eException. This is because the same thread cannot start
concurrently in nore than one.

I would renove one of themas foll ows.



public class Test inplenents Runnable {
public static void main(String[] args) {
new Test ();
}
public Test(){
Thread t = new Thread(this);
t.start();

}

public void run() {
Systemout.println("test");

}

}

29.10 What are the benefits of using a thread pool?

29.10 Answer

By using a thread pool, tasks are added to a queue and are executed in
order. Because of creating the mninmmrequired tasks concurrently, you can
avoi d wasting resources.

29.14 How do you create a lock object? How do you acquire a lock and release a
lock?

29.14 Answer

To create a | ock object, you instantiate an object by using Lock interface
as "Lock lock = new ReentrantLock();".

To acquire a lock, you use lock() nmethod as "l ockObject.lock();". To
rel ease a |l ock, you use unlock() nethod as "Il ockObject.unlock();".

29.15 How do you create a condition on a lock? What are the await(), signal() and
signalAll() methods for?

29.15 Answer

If you created a Lock object naned | ock, you can create a condition by
using Condition interface, which is bound in Lock interface, as "Condition
condition = | ock. newCondition();".

By using await(), current thread waits for it is signaled or interrupted.
O, if you set specified time to the argunent, the thread waits until the
tinme.

By using signal (), a waiting thread is started. By using signal All (), al
of waiting threads are started.

29.18 What is the possible cause for lllegalMonitorStateException?

29.18 Answer

If you use wait(), notify, or notifyA |l nethods outside of synchronized
bl ocks, you will get an Il egal MonitorStateException.

29.21 What blocking queues are supported in Java?

29.21 Answer



You can bl ock queues by using put(e), take(), offer(e, time, unit), or
poll (tinme, unit), which are provided by Bl ocki ngQueue interface. Al so,
put (e) and take() are without timeouts, and offer(e, tine, unit) and
poll (tinme, unit) are with tineouts.

29.22 What method do you use to add an element to an ArrayBlockingQueue? What
happens if the queue is full?

29.22 Answer

You can use add(e), offer(), offer(), or put() to add an element to an
ArrayBl ocki ngQueue.

When using add(e), and if the queue is full, the nmethod throws
Il egal St at eException

VWen using offer(e), and if the queue is full, the method returns false.

When using offer(e, tinme, unit), and if the queue is full, the nethod waits
for the queue to becone available until specified tine

VWhen using put(e), and if the queue is full, the method waits for the queue
to become avail abl e.

29.23 What method do you use to retrieve an element from an ArrayBlockingQueue?
What happens if the queue is empty?

29.23 Answer

You can use peek(), poll (), poll(time, unit), or take() to retrieve an
el ement from an ArrayBl ocki ngQueue.

VWhen using peek() or poll(), and if the queue is enpty, the methods throws
nul | .

VWhen using poll(time, unit), and if the queue is enpty, the nethod waits
for the queue becone non-enpty until specified tine.

When using take(), and if the queue is enpty, the method waits for the
queue becone non-enpty.



