
11.4 How do you explicitly invoke a superclass's constructor from a subclass?
Provide an example.

11.4 Answer

To invoke the superclass's constructor from a subcl ass, using super method,
you have to write this method as "super();" at the first line in the
subclass's constructor because the superclass shoul d be initialized before
subclass.

11.5 How do you invoke an overridden superclass method from a subclass? Provide
an example.

11.5 Answer

To invoke an overridden superclass method from a su bclass, you instantiate
the subclass by using the new operator, but it retu rns a superclass's
reference variable. For example, if there are a sup erclass named Super and
a subclass named Sub, you can write "Super object = new Sub();" to invoke
an overridden method from the subclass.

11.6 Explain the difference between method overloading and method overriding.

11.6 Answer

Method overloading is to define two or more methods with a same name, a
different return value and different number/type of arguments within the
same class.

 On the other hand, method overriding is to define m ethods with the same
signature both in the superclass and a subclass. A method defined in a
subclass overrides the method in the superclass.

11.7 If a method in a subclass has the same signature as a method in its superclass
with the same return type is the method overridden or overloaded?

11.7 Answer

It is the method overridden.

11.8 If a method in a subclass has the same signature as a method in its superclass
with a different return type, will this be a problem?

11.8 Answer

This will be a problem, even though the program wil l work. This is because
method overriding won't come into effect in this ca se, so that overriding
makes no sense.

11.9 If a method in a subclass has the same name as a method in its superclass with
different parameter types is the method overridden or overloaded?

11.9 Answer

It is the method overloaded.

11.17 There are three errors in the code below. Identify them.

ArrayList list = new ArrayList();
list.add ("Denver");
list.add("Austin");
list.add(new java.util.Date());
String city = list.get(0);
list.set(3, "Dallas");
System.out.println(list.get(3));

11.17 Answer

First error is "String city = list.get(0);" that is a cast error.
"list.get(0)" is a reference type, so that you need to convert that to
String such "String city = (String) list.get(0);".

Second error is "list.set(3, "Dallas");". This is t rying to set "Dallas" to
index 3 of the list, although only indices 0 to 2 h ave elements. You can
change that to "list.add(3, "Dallas");" or "list.se t(2, "Dallas");".

Third error is "System.out.println(list.get(3));". Just like the second
error, this is trying to get the element of index 3 , although index 3 is
empty. You can change that to "System.out.println(l ist.get(2));".

11.22 How do you prevent a class from being extended? How do you prevent a
method from being overridden?

11.22 Answer

If you want to prevent a class from being extended, you need to use the
access modifier "private" for its fields or methods . Or, if you want to
prevent a method from being overridden, you need to use "private" or
"final" for the method.

