BASIC 3D SHOOTING GAME

Final Project

Basic 3D Shooting Game

Yuji Shimojo

CMSC 325
Instructor: Dr. Amitava Karmaker

March 10, 2013

BASIC 3D SHOOTING GAME

Introduction
| created a basic Java shooting game with jMonkgiten(JME) framework. To be
precise, my development environment is JME 3 SDK2R@ Mac OS X Snow Leopard (10.6).
My project is mainly based on a sample code giwethb professor in the class. | redesigned the

program including dividing and adding classes, amldanced the functions.

Operating Instructions

1. Double-click ShootingObjectsMain.jar in the attagnnfolder, and then the jME window
will open.

2. Press 'OK' to start the application.

3. After you start the application, you will see fmfrmoving balls in a scene.

4. You can shoot those balls by clicking the left m@bstton or the space bar.

5. You can destroy: the biggest ball by shooting ame for getting 2 points; the second
biggest ball by shooting two times for getting 6rs; the second smallest ball by shooting
three times for getting 10 points; and the smalleditby shooting four times for getting 16
points.

6. You can change the weapon: press ‘L' for Laser B&irfor Cannon Ball, or ‘A’ for Arrow.

7. After two minutes, the game will stop and show yfal score.

Class Diagram and Design Description

BASIC 3D SHOOTING GAME

SimpleApplication

public class ShootingObjectsMain

- output : java.io PrintWriter
- bulletAppState : BulletAppState
- createCube : Cube

- target : Target

- weapon : Weapon

- count:int=20

+ shootables : Node

+ timeClone : Timer

- gameTimeCount : int = 0
- shotsFired ; float = 0

- shotsHit : float = 0

- destroyedTarget : int = 0
- shotAccuracy : float = 100
- points :int =0

+ weaponState : int = 0

public class Cube

- bulletAppState : BulletAppState
- rootNode : Node
- assetManager : AssetManager

- createBackCube() : void

- createFrontCube() : void

- createRightSideCube() ;: void
- createlLeftSideCube() : void

- createBottomSideCube() : void
- createTopSideCube() : void

public final class Target

- bulletAppState : BulletApp5State

- rootNode : Node

- shootables : Node

- assetManager : AssetManager

+ outlineBalll : Geometry

+ outlineBall2 : Geometry

+ outlineBall3 : Geometry

+ outlineBall4 : Geometry

+ ballCollision1 : RigidBodyControl
1.» + ballCollision2 : RigidBodyControl
+ ballCollision3 : RigidBodyControl
+ ballCollision4 : RigidBodyControl

: i + geolLaserBeam : Geometry
+ timePlayed : BitmapText 1

+ bulletsFired : BitmapText

+ bulletsHit : BitmapText

+ accuracy : BitmapText

+ targetsDestroyed : BitmapText
+ pointSum : BitmapText

+ selectedWeapon : BitmapText

+ createBall1() : void
+ createBall2() : void
+ createBall3() : void
+ createBall4() : void

-balll:int=10 :
-ball2:int=0 public class Weapon
-ball3:int=10 1 - bulletAppState : BulletAppState
-ball4d :int=10

- laserBeamAudio : AudioNode

- cannonBallAudio : AudioNode

- arrowAudio : AudioNode

- objectExplodeAudio : AudioNode
- actionListener : ActionListener

- rootNode : Node

- assetManager : AssetManager
L.*| + geolaserBeam : Geometry

+ geoCannonBall : Geometry

+ geoArrow : Geometry

+ matLaserBeam : Material

+ matCannonBall : Material

+ matArrow : Material

+ phyLaserBeam : RigidBodyControl
+ phyCannonBall : RigidBodyControl
+ phyArrow : RigidBodyControl

+ VELOCITY : int = 100

+ makelLaserBeam{location : Vector, direction : Vector) : void
+ removeLaserBeam() : void

+ makeCannonBall{location : Vector, direction : Vector) : void
+ removeCannonBall() : void

+ makeArrow(location : Vector, direction : Vector) : void

+ removeArrow() : void

= ;
+ simplelnitApp() : void

+ stop() : void

+ simpleUpdate(tpf : float) : void

+ initKeys() : void

+ onAction(name : 5tring, keyPressed : boolean, tpf : float) : void
- initAudio() : void

- initCrosshair() : void

- updateTime() : void

- updateShotsFired() : void

+ updateWeaponDisplay(: void

- createNewCubes(hit : String) : void

First, Cube class creates cubic scene objects, lmadeiding the professor's sample
code. The reason | did is to simplify and encagswach class more.

Second, Target class creates balls which are staate by dividing the professor's
sample code as well as the Cube class.

Next, Weapon class creates three types of weapmidyg the user. They are a laser

beam, a cannon ball, and an arrow.

BASIC 3D SHOOTING GAME

Finally, ShootingObjectsMain is the main class gffmal project including a main
method, which creates instances of Cube, Targdt\@apon classes. Its main functions are text

display on the screen, file export, and event hemsdbr key presses and collision detections.

Assetsand Library
| downloaded the sounds of laser beam, stoningyeledsing an arrow from a bow from
a sound archived Website for this project ("Sour@J2013). Also | added jme3-test-data

library to use a stone material for the cannon. ball

Research M ethods and References
As mentioned eatrlier, | enhanced the professongpkacode, and | took sort of code
snippets from Hello Audio and Hello Physics in jMEorials ("jMonkeyEngine Tutorials and
Documentation," n.d.). Furthermore, some video¥ oaTube explains usage demo of j]ME
components and methods. For example, a video kkaws how to use Arrow class clearly

(Wesley Shillingford, 2012).

Test Data
Bullets Bullets

No Fired Hit Accuracy | Targets Destroyed | Points Weapon Targets
1 268.0 97.0 | 36.19403% 85 218 | Laser Beams Bigger balls
2 205.0 93.0 | 45.36586% 83 202 | Cannon Balls | Bigger balls
3 209.0 112.0 | 53.58852% 93 262 | Arrows Bigger balls
4 264.0 79.0 | 29.92424% 28 276 | Laser Beams | Smaller balls
5 262.0 101.0 | 38.54962% 32 352 | Cannon Balls | Smaller balls
6 291.0 123.0 | 42.26804% 40 440 | Arrows Smaller balls
7 470.0 129.0 | 27.44681% 70 380 | Laser Beams | All balls
8 428.0 141.0 | 32.94392% 75 430 | Cannon Balls | All balls
9 427.0 163.0 | 38.17330% 80 514 | Arrows All balls

BASIC 3D SHOOTING GAME

Resultsand Consideration
When | focus on bigger balls, the points are fdioly in whole. Because there are many
of bullets fired when | don't have any aims, poents relatively high. In weapons, using arrows
is expected to get high scores the most maybe be@awows are thinner and sharper so | could

pinpoint the objects unintentionally.

References

SoundJax. (2013). Retrieved March 10, 2013, findim://soundjax.com/

Wesley Shillingford. (2012). [[ME Tutorial 1-6] Rations in the jMonkeyEngine (Part 2/2),
Retrieved March 10, 2013 from

http://www.youtube.com/watch?v=tYZdgmsegFY &list=UB8IrgCNoRddloox7ySkBQ&in
dex=30

jMonkeyEngine Tutorials and Documentation. (n.gMonkeyEngine.org, Retrieved

http://imonkeyenagine.org/wiki/doku.php/ime3

